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Dynamics of multishell vortex structures in mesoscopic superconducting Corbino disks
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We study the dynamics of vortex shells in mesoscopic superconducting Corbino disks, where vortices form
shells as recently observed in micrometer-sized Nb disks. Due to the interplay between the vortex-vortex
interaction, the gradient Lorentz force and the (in)commensurability between the numbers of vortices in shells,
the process of angular melting of vortex-shell configurations becomes complex. Angular melting can start
either from the center of the disk (where the shear stress is maximum) or from its boundary (where the shear
stress is minimum) depending on the specific vortex configuration. Furthermore, we found that two kinds of
defects can exist in such vortex-shell structures: intrashell and intershell defects. An intrashell defect may lead
to an inverse dynamic behavior, i.e., one of the vortex shells under a stronger driving force can rotate slower
than the adjacent shell that is driven by a weaker Lorentz force. An intershell defect always locks more than
two shells until the gradient of the Lorentz force becomes large enough to break the rigid-body rotation of the

locked shells. Such a lock-unlock process leads to hysteresis in the angular velocities of the shells.
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I. INTRODUCTION

The dynamics of vortex matter in mesoscopic and nano-
structured superconductors has attracted an increasing inter-
est of researchers studying the fundamental properties of vor-
tex matter and its practical applications in superconducting
devices. Over the last decade, the dynamics of vortices in
superconducting disks has been actively studied by using a
Corbino geometry.'"® In a Corbino geometry (see Fig. 1), a
superconducting disk is placed in an external perpendicular
magnetic field H, with a radial driving current /, which is
injected at the center of the disk and removed from its edge.
The density of the current j decays as 1/p along the
radius,*~® so the driving force (i.e., the Lorentz force) fd that
acts on a vortex near the center of the disk is larger than that
close to the edge. This natural gradient of the driving force
allows a direct examination of the elastic moduli of the vor-
tex lattice, e.g., the shear modulus.

In an infinite superconductor and in thin films, vortices
form a triangular Abrikosov lattice’ as a consequence of the
isotropic repulsive vortex-vortex interaction. Therefore in
large disks most of vortices are packed in a triangular lattice
except those near the interface. The transition from elastic
(i.e., vortex lattice under elastic deformations) to plastic (i.e.,
vortex liquid) vortex motion in Corbino disks has been in-
vestigated in Refs. 2, 6, and 8. Two sharp jumps of the global
resistance at two critical current values in large disks have
been found.® The system transits from rigid-body motion to
plastic flow motion and proceeds from plastic motion to
laminar motion at those two jumps, respectively.

Due to the interaction between the vortices and the edge,
the configuration of vortices in mesoscopic disks experiences
a transition from the Abrikosov lattice to vortex shells with
decreasing size of the system.!” Vortices obey specific rules
for filling shells in small disks, which have been found in
numerical simulations''> and were recently observed in ex-
periments by using the Bitter decoration technique.'>'* The
dynamics of vortex shells in small mesoscopic Corbino
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disks, having only two or three shells, was investigated in
Ref. 7. By applying an increasing external current /, to such
a system, the vortex shells unlock at a critical value of the
current /. and start to rotate with different angular velocities
(which is called “angular melting””'5-1%) while for I,<I, all
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FIG. 1. (Color online) (a) Schematic plot of a Corbino disk: a
current is injected at the center of the disk and flows radially to the
edge in the presence of an external perpendicular magnetic field H,.
(b) The experimental setup of a macroscopic Corbino disk (after
Ref. 4). The vortex is driven by the gradient Lorentz force due to
the inhomogeneous density of the current along the radius.
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the vortices rotate as a rigid body. With increasing magnetic
field, a “structural transition” was revealed when a vortex
jumped from the outer shell to the inner shell, similar to the
Coster-Kronig transition in hollow atoms.” A two-step angu-
lar melting was found in a three-shell system with increasing
temperature for driving current below the depinning thresh-
old, similar to what was found in experiments.*>

In the present study, we are interested in large mesoscopic
disks that contain several vortex shells, i.e., the intermediate
case between small mesoscopic disks and macroscopic disks
where vortices form a lattice. In view of the interplay be-
tween the vortex-vortex interaction and the confinement, our
findings will lead to a better understanding of the rich dy-
namics of multishell systems. Note that in our previous
work,'® we demonstrated the possibility of unusual (“uncon-
ventional”) dynamics and melting of shells in mesoscopic
Corbino disks. Here, we analyze the free energy and the
statistics of different vortex states, discuss the mechanism of
intershell “friction” in commensurate and incommensurate
shells, and systematically investigate the dynamics of vortex
shells by considering many different vortex configurations
(VC). We classify different types of defects and analyze the
propagation of a “compression-decompression wave,” in-
duced by defects that results in “unconventional” dynamics
of vortex shells.

The paper is organized as follows. We describe the simu-
lation method in Sec. II. Then, in order to find the ground
state and examine the stability of different configuration
states, the free energy and the probability of different con-
figurations will be analyzed in Sec. IIl. After that, we will
present in Sec. IV the different dynamical processes that are
responsible for angular melting in mesoscopic Corbino disks.
The first part of this section will show two different scenarios
of angular melting for different configurations: the angular
melting starting either at the center or near the edge. In ad-
dition, the dynamics of vortex shells in two specific cases
will be discussed in Sec. IV. In such a way, we will reveal
two kinds of defects which respectively induce: (i) an inverse
dynamical behavior, i.e., an inner shell moving slower than
its outer neighbor and (ii) a hysteresis effect of the angular
velocity. Finally, our conclusions will be given in Sec. V.

II. SIMULATION

In order to study the dynamics of vortices driven by the
Lorentz force that is induced by the external current, we
perform Langevin-type molecular-dynamics (MD) simula-
tions and numerically integrate the overdamped equations of

motion:7-11-12,14,18,20

dr;

— L _f 1

=/ (M)
with

[i=f L+ f+f (2)

where 7 is the viscosity coefficient which is set here to unity,
and f}°, fiT, ff’, and f? are the vortex-vortex interaction force,
the thermal force, the driving force (Lorentz force), and the
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force due to the shielding currents and the edge,
respectively.”!21420 Note that the disorder (i.e., due to the
intrinsic pinning) results in the overdamped regime of vortex
motion. At the same time, disks are assumed to be free of
artificial inclusions or holes (i.e., artificial pinning centra)
and thus the vortex-pin interaction has not been explicitly
included in the equation of motion, Eq. (1) (cp. Refs. 20-22).
The thermal force fiT obeys the following conditions:

(i (1)y=0 3)

and
(fiT(t)ij(t’)) = 27;kBT5ij5(t -1'). (4)

An applied current flows from the center of the disk to the
edge and thus the density of the current is inversely propor-
tional to the radius p,

.

9 5
2pd ®)

J(p) =
where d is the thickness of the superconducting disk. There-
fore, the Lorentz force acting on the outer vortex, i.e., near
the boundary, is much weaker than that acting on the inner
one, i.e., close to the center. To avoid divergency of the cur-
rent density at the center, we introduced a cutoff radius pg
=107°R. Inside of the cutoff radius, the density of the current
was assumed to be constant: J,=J(p). The driving force (per
unit length) due to the radial current is

Dyl Jolo

(_ 0 5 _J005 6
' 2mpd r; (©)

where r;=p;/R, 6 is the unit vector in the azimuthal direction
in the disk plane, fo=®3/(2muoRN\?)=4mu & H>/R is the
unit of force, and Iy=u\’I/(Pyd) = uoAI/ P, is the dimen-
sionless driving current. Here R is the radius of the disk. We
treat vortices as massless classical particles (CPs) and as-
sume that the motion of the vortices does not influence the
distribution of the applied current density. Therefore, the
driving force is always applied in the azimuthal direction and
thus no Hall effect is taken into account.

In a thin superconductor such that A=N*/d>R>é>d,
the vortex-vortex interaction force f¥ is modeled by’-!1-?3

S ( L Rl ) (7)

ik |"i—"k|2 k|r1%"i—"k|2

and the force due to the vortex interaction with the shielding

currents and the edge f; is”!1-3
1

f?=fo<m—h>ri (8)

with the dimensionless applied magnetic field &

=R uoHy/ ®y=(Hy/2H,»)(R/ €)*.

In our simulations, we first set 7>>0, when no current is
applied, and then gradually decrease temperature to let the
system relax to the ground state.>*"?® In this way, we simu-
lated the stimulated annealing process similar to that in an-
nealing experiments.>”-?® Then, we set 7=0 and apply the
current to study the dynamics of the system of vortices.
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III. VORTEX CONFIGURATIONS AND THEIR STABILITY

The system of many interacting vortices in a disk has
many local minima corresponding to metastable (MS) states.
We analyze the stability of different vortex configurations by
calculating their free energy and probability of appearance.

For vorticity (i.e., the number of vortices in a disk) L
>3, the ground-state (GS) and metastable configurations of
vortices in mesoscopic disks have been found both in
simulations''? and in experiments.!*> To find the ground
state at different magnetic field H,y, we calculated the im-
proved London free energy,'®

F:fL"'fcore (9)

with

L i-1
J:Lzz <€§elf-+ E;hidd_'_z Eij) + €ore 4 efield, (10)

i=1 J=1

3
.7:00,6%—1+LP. (11)

This London energy, Eq. (9), contains two parts. One is
the usual London energy and the other one is related to the
vortex cores contribution. When «>1, vortex cores do not
overlap® and A=\?/d> &> d, then we obtain the usual Lon-
don energy F;. However, the usual London limit neglects the
spatial variation in |W?|. By introducing a function (which
varies from 0 to 1 within the range |p—p,| ~ &) to approxi-
mate the size of the vortex core, the contribution of the vor-
tex cores have been taken into account. Assuming the vortex
core has radius \2&, we obtain the contribution F,,,,. Thus
the “improved London energy” is the sum of these two con-
tributions, which provide an agreement with the Ginzburg-
Landau result as was shown in Ref. 10.

Figure 2 shows the free energy as a function of magnetic
field in a disk with R=50¢. Note that the difference in the
free energy between two states with different L is much
larger than that between two different configurations with the
same L [see the inset of Fig. 2(c)].

Analyzing the energies of different configurations with
the same L, we find the range of magnetic field values in
which the ground-state-energy configuration remains the
same. For instance, the configuration (1-6-12-19-25) with L
=062 has the lowest energy for 75.9<<h<<76.7. Compared to
the states of charged CPs, the ground states [column “ground
state (VC)”] and the metastable states [column “metastable
(VC)”] with different L in disks with R=50¢ are listed in
Table I.

In order to find the probabilities of appearance of different
metastable configurations, we performed number (usually
100) simulations for the same L starting from different ran-
dom initial vortex configurations. Although it may not cover
all possible configurations, the statistic of 100 simulations
gives a rather representative sampling these stable configu-
rations. In this way, the “most probable” vortex configuration
(i.e., the configuration with the highest probability of appear-
ance) for a certain L is found. The probabilities are shown in
Fig. 3 for different vortex states, for L=63, 92, and 93. We
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FIG. 2. (Color online) The energies of different vortex configu-
rations with vorticities: (a) L=33-39; (b) L=59-64; and (c) L
=86—-94. The ground state is denoted by the letter “G” if there are
several different configurations with the same L in (c) and these
configurations are distinguished by using Greek letters “a” (i=1),
“B (i=2), “y” (i=3), “&” (i=4), and “&” (i=5), which denote the
ith shell with 6i+1 vortices (i.e., shell S§;,,) while the others have
6i vortices (i.e., shell Sk), respectively. Here Sj- is introduced to
denote the ith shell which contains j vortices. The difference in
energy between two configurations with different vorticities L is
much larger than that between two configurations with the same L
as is illustrated by the inset of (c). The regions of magnetic field
where the ground-state-energy configuration is provided by the
same L are separated by vertical black dotted lines.

find that the most probable configuration is not always the
lowest-energy state for given values of L. For instance, for
L=92, the state (1-6-12-19-24-30) is the most probable state
[Fig. 3(b)] with 46% appearance while the ground state (1-
6-12-18-24-31) is found in only 15% of the cases. Previously
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TABLE I. The GS and MS VC in a disk with R=50¢ and the ground state and metastable state of CPs
(Refs. 15 and 30). A typical value of magnetic field & corresponding to the ground state is also given.

L h GS (VO) MS (VC) GS (CPs)* MS (CPs)*

33 45 5-11-17 1-5-11-16 1-6-11-15  1-5-11-16  1-6-10-16

34 46 1-5-11-17 5-12-17 6-11-17 1-6-12-15  1-6-11-16  1-7-11-15
1-5-11-17

35 47 1-5-12-17 1-5-11-18 1-6-12-16  1-6-11-17  1-7-11-16
1-6-13-15

36 48 1-6-12-17 1-6-11-18 1-5-12-18 1-6-12-17  1-7-12-16  1-6-13-16
1-7-13-15

37 49 1-6-12-18 1-7-12-17  1-7-13-16  1-6-13-17

38 50 1-6-12-19 1-6-13-18 1-7-13-17  2-7-13-16  2-7-12-17
1-7-14-16

39 51 1-6-13-19 1-7-12-19 2-7-13-17  1-7-13-18  1-7-14-17
2-7-14-16

61 75 1-6-12-18-24 1-7-12-18-23

62 76 1-6-12-19-24 1-6-13-18-24 1-7-12-18-24

63 77 1-6-12-19-25 1-6-13-19-24 1-7-13-18-24

64 78 1-7-13-19-24 1-7-13-18-25

90 106 1-6-12-18-24-29

91 107 1-6-12-18-24-30

92 108 1-6-12-18-24-31 1-6-12-18-25-30  1-6-12-19-24-30

1-6-13-18-24-30  1-7-12-18-24-30
93 109 1-6-12-18-25-31 1-6-12-19-25-30  1-6-13-19-24-30
1-7-13-18-24-30  1-6-13-18-24-31
94 110 1-7-13-19-24-30  1-6-13-19-25-30  1-6-13-19-24-31

4Results of Refs. 15 and 30.

similar results were found in the case of small disks'> which
was explained as due to the fact that the ground state is
reached through narrower minima in configuration space
while the most probable state corresponded to a broader local
minimum that is separated from the ground state by an en-
ergy barrier. Note that, in principle, when the annealing is
slow enough and the number of initial random realizations is
large enough such that the whole configurational space (i.e.,
all possible vortex configurations) is covered, the “lowest-
energy” and the most probable states should coincide. How-
ever, in reality, this would require very extensive and thus
very slow simulation runs for finding just initial vortex dis-
tributions. The fact that the most probable state does not
coincide with the lowest-energy state means that this state is
a metastable state with an energy very close to the energy of
the ground-state configuration. It is important that this way
of finding the initial vortex configuration has a direct experi-
mental realization when a hundred (or 200-300) identical
disks are measured at the same conditions and then the sta-
tistics of different states is analyzed (see Refs. 13 and 14).
Thus, by finding the most probable state we simulate the
experimental conditions.'>!* We have found that some of
these most probable states exhibit interesting dynamical be-
havior which will be discussed in the next section.

IV. ANGULAR MELTING: DIFFERENT SCENARIOS

We define the average velocity of all vortices in the ith
shell as the “angular velocity of the ith shell,” w;. The angu-
lar velocity of each shell {w;|i=1,2,...} is calculated as a
function of the applied current I, i.e., w(l;) curves will be
plotted.

Because the Lorentz force, i.e., the driving force f", is
maximum at the center of the disk and reduces as 1/p along
the radius, one can expect that inner shells unlock first, i.e.,
angular melting starts at the center and propagates toward the
periphery. This behavior is indeed realized in macroscopic
disks. However, in mesoscopic disks with a shell structure
the process of melting is more complex due to
commensurability/incommensurability between the shells re-
sulting in different scenarios of angular melting. We discuss
these different scenarios below.

A. Commensurability/incommensurability and angular melting

The shells are called commensurate when the numbers of
vortices in those shells are commensurate, i.e., they have a
common divisor.?! Commensurate vortex shells usually con-
tains 6/ vortices, where i is an integer. These shells are
strongly locked because of a relatively larger energy barrier
due to the interaction with the vortices in adjacent shell(s)
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FIG. 3. (Color online) The probability of the appearance of dif-
ferent vortex configurations with vorticity (a) L=63, (b) L=92, and
(c) L=93. The most probable state is not always the ground state
(denoted by G). For instance, for L=63, the ground state is (1-6-
12-19-25) with probability 17%, which is smaller than the prob-
abilities of states (1-6-13-19-24) and (1-7-13-18-24).

resulting in a larger intershell friction and thus a larger shear
stress is required to unlock them than in the case of incom-
mensurate shells which can easily slide with respect to each
other (see Fig. 4). To illustrate the effect of commensurate
and incommensurate shells, we consider here disks with vor-
ticity L=38, which represent typical configurations with
small vorticity having both commensurate and incommensu-
rate shells. We find three (meta)stable configurations for L
=38 which are (1-7-12-18), (1-6-13-18), and (1-6-12-19). We
introduced Sj to denote the ith shell which contains j vorti-
ces. For example, shell S1 of the configuration (1-7-12-18),
shell §2; of the conﬁguratlon (1-6-13-18), and shell S5, of the
configuration (1-6-12-19) are incommensurate shells. By
studying the angular velocities of shells, we find that incom-
mensurate shells split off at lower driving force (shown in
Fig. 5), as one intuitively expects.

Shell S} [Fig. 5(a)] splits off first due to both a larger
gradient of the Lorentz force and a weaker friction (i.e., a
smaller energy barrier) with the incommensurate adjacent
shell sz. However, while shell Sé [Fig. 5(c)] experiences a
larger gradient of the Lorentz force, it also has a stronger
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FIG. 4. (Color online) The energy barriers produced by vortices
of the outer shell: (a) in commensurate case and (b) in incommen-
surate case. The configurations with two commensurate [i.e., (1-6-
12)] and incommensurate shells [i.e., (1-6-13)] are shown in (c) and
(d), respectively. All vortices of the inner shell (stars) rotate with
respect to the outer shell (balls) due to the driving force. The inter-
action energy between the inner shell and the outer shell E is cal-
culated for both cases. Here Ej(Ej) is the interaction energy of the
ground state in the commensurate (incommensurate) case. The en-
ergy barrier in (a) is much larger than that in (b); notice also the
factor 102 difference in scale. Therefore, when the shells are com-
mensurate, the inner shell must overcome a larger friction (due to
the energy barriers) to rotate individually.

friction due to the commensurate adjacent shell S7,. There-
fore, there is a competition between the gradient driving
force and the commensurability effect (which determines
friction between adjacent shells). Our calculations show that
often commensurability plays a more important role than the
local gradient force, resulting in an unusual (unconventional)
dynamical process. Angular melting can occur first in regions
of weaker shear stress'® because of a relatively weaker fric-
tion. The commensurability effects in multishell vortex struc-
tures display themselves in a more complex way than in the
case of just two (in)commensurate shells (chains). This can
be illustrated by the vortex configuration shown in the inset
of Fig. 5(b). Parts of the vortices of the incommensurate
shell 5%3 adjust themselves to the commensurate core and
thus this shell actually contains a hexagonlike part which is
characterized by a relatively stronger friction with adjacent
shell(s). As a result, the local shear modulus of that incom-
mensurate shell is inhomogeneous and turns out to be angle
dependent. In this case, the outer commensurate shell(s)
could be locked to the core via the hexagonlike part of the
incommensurate shell [as, e.g., shell ng for L=62 in Fig.
6(a); see also Ref. 18] and thus rotates with the same angular
velocity as the core until the current reaches a critical value
and unlocks the shells. Therefore, the effect of commensura-
bility can even involve remote shells. This makes the process
of angular melting in multishell vortex structures with in-
commensurate shells more complex.

Commensurate shells which contain 6 (i is a positive
integer) vortices tend to form locally a hexagonal arrange-
ment of vortices similar to a triangular Abrikosov lattice. On
the other hand, due to the circular confinement the outermost
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FIG. 5. (Color online) The angular velocities of shells in differ-
ent configurations with L=38: (a) (1-7-12-18), (b) (1-6-13-18), and
(c) (1-6-12-19). The angular melting first occurs in the incommen-
surate shell due to a weaker friction. Different scenarios of angular
melting, i.e., the first unlocking of different shell occurs in: (a) the
innermost shell S;, (b) the middle shell S%S, or (c) the outermost
shell 3.

shell is forced into a shape close to a circle. There is a tran-
sition region from the triangular Abrikosov lattice at the cen-
ter to the circle shell close to the boundary.?? It is clear that
two adjacent circlelike shells (or out of those shells at least
one is circlelike) can slide much easier with respect to each
other than two adjacent shells that are arranged in a hexagon-
like configuration. This explains the above effect of unusual
angular melting starting near the boundary and propagating
toward the center with increasing applied current.
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FIG. 6. (Color online) (a) Comparison between the configura-
tions L=61 (1-6-12-18-24) and L=62 (1-6-12-19-24); (b) the angu-
lar velocities of shells for magnetic field h=78 with L=62 (1-6-12-
19-24); (c) the magnified image of (b). Because of an extra vortex
in shell S?g (i.e., shell S?g is incommensurate) the friction between
the adjacent shells $2, and S3, is small. Therefore, shell S?g can
easily slide between the adjacent shells.

B. Intrashell defects and inverse angular velocities

Due to the radially decreasing driving force, outer shells
are expected to rotate slower than inner ones, except in the
rigid-body regime where all shells rotate together with the
same angular velocity. However, we found that for certain
configurations and in specific ranges of current that the an-
gular velocity becomes inverse, i.e., a ith shell with radius r;
rotates with a larger angular velocity than the inner adjacent
shell i—1 with radius r,_; <r;. For example, in case of L
=38 (1-6-13-18) shell Si; has the largest angular velocity
when it unlocks while shells S§ and S3, still rotate together
[shown in Fig. 5(b)]. Such unusual dynamical behavior is
caused by the mismatch between shells along the azimuthal
direction, in particular, when there are incommensurate
shells (usually containing 6i+ 1 vortices) between two com-
mensurate shells and we will call this an “intrashell defect.”

As compared to the configuration where all shells are
commensurate [i.e., the magic-number configuration (MNC)
(Refs. 15, 31, and 33], an intrashell defect breaks up the
sixfold symmetry of the shell and makes the part of the shell
with defect “circlelike” [e.g., the left part of shell S?() in Fig.
6(a)]. The additional vortex shifts other vortices of the shell
from their stable trianglelike-lattice positions. Figure 6(a)
shows the difference between L=62 (1-6-12-19-24) and L
=61 (1-6-12-18-24), i.e., configurations with and without de-
fect, correspondingly. The angular velocity of each shell is
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shown in Fig. 6(b). Because of the incommensurability, shell
5?9 splits off first and rotates “individually” [shown in Fig.
6(c)] while all other shells rotate with the same angular ve-
locity. With increasing current, the commensurate shells start
to unlock one by one. Commensurability can still explain the
above behavior: the friction between incommensurate shell
S}, and the adjacent shells is weaker than that between other
shells, and shell S %9 can relatively easily slide with respect to
the other shells.

For completeness we also calculated the angular veloci-
ties for disks which contain two or more defect shells, e.g.,
L=63 (1-6-12-19-25) and L=93 (1-6-12-19-25-30) which
are shown in Fig. 7. Analyzing this unusual dynamical be-
havior, we concluded that it cannot be explained only by
commensurability. Therefore, a two-step angular-melting
process has to be invoked in order to explain the inverse
angular velocity behavior for the transition from rigid-body
rotation (v~ p) to individual rotation of shells (v~1/p).
Hence, we define three regimes of vortex dynamics.

(I) Rigid-body motion. When the current is small, the gra-
dient of the driving force is too small to overcome friction
(due to the vortex-vortex interaction). All vortices rotate to-
gether as a rigid body.

(I) Compression-decompression motion. For a larger ap-
plied current, incommensurate shells slide with respect to the
other shells. On one hand, the local shear modulus of the
circlelike part of the defect shell is too small to keep the
outer shell(s) rotating together with the inner shells. On the
other hand, the gradient of the driving force is not large
enough to overcome the friction between the hexagonlike
part of the defect shell and its adjacent commensurate shell.
In this case, the incommensurate (defect) shell is partly an-
gular melted. The vortices of the melted part participate in an
inhomogeneous slow motion, which releases a part of the
vortices in that shell from the circlelike positions to their
triangular-lattice positions and pushes another part of vorti-
ces away from their lattice positions. Such kind of
compression-decompression motion (see Fig. 8) modifies the
local density of vortices in the defect shell and finally results
in a longitudinal wavelike propagation in the defect shell.

(1) Laminar motion. The shells finally acquire “indi-
vidual” velocities over a certain value of current when the
Lorentz force can overcome the friction. It means that the
vortex lattice is totally angular melted. Note that the shells
still remain well distinguished, i.e., vortices do not jump
from one shell to the others. The latter would mean the onset
of radial melting.”-!5-17

The above regimes, except the second regime, have been
discussed in previous sections. Inversion of angular veloci-
ties only occurs when the shells display compression-
decompression motion. For instance, we consider the con-
figuration (1-6-12-18-25-31) for L=93. Shell Sgs and shell
S;l split off first as expected (shown in Fig. 9) because of
incommensurability. However, shell S35 has the smallest an-
gular velocity until the current reaches the value I.. The mo-
tion of shell S35 and shell S3, is considered as the combina-
tion of the rigid-body motion with the core (i.e., the inner
shells forming a rigid MNC) and the relative slow motion
with respect to the core. The velocities of shells Sgs and S;l
can be expressed by the following formula:
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FIG. 7. (Color online) Comparison between the configurations:
(a) (1-6-12-18-24) for L=61 and (1-6-12-19-25) for L=63; (b) (1-
6-12-18-24-30) for L=91 and (1-6-12-19-25-30) for L=93, and the
angular velocities of shells with (¢) (1-6-12-19-25) for L=63, and
(d) (1-6-12-19-25-30) for L=93. As shown here, the angular veloc-
ity of shell S?Q is smaller than that of shell 535 when 1,<<0.0015 (c)
and when 0.005<1;,<<0.009 (d). However, shell ng experiences a
larger Lorentz force than shell S‘z‘5 in both cases. Thus, the angular
velocities of shells S?Q and 535 are opposite to the gradient of the
Lorentz force in these regimes, i.e., there is an inversion of the
velocity of these two shells with respect to the usual case.

(i=4,5), (12)

V= wir; = o+ Av;

where w,. is the angular velocity of the core, r; is the radius
of the ith shell, and Av is the linear velocity of the
compression-decompression wave. The same linear velocity
(Avy=Avs) was found for shells S35 and 3, in the regime of
compression-decompression motion, which become different
for I>1I (shown in the inset of Fig. 9). Even in the case of
several defect shells and for defect shells which are near the
center of the disk, we find that the vortices of defect shells
have the same Av in that regime (e.g., L=94 is shown in Fig.
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FIG. 8. (Color online) The evolution of the angle (6;) between
two neighbor vortices in the incommensurate shell. The plot shows
that the compression part (i.e., characterized by a relatively smaller
angle 6;) propagates along the shell. The compression part is fol-
lowed by the decompression part resulting in a propagating
compression-decompression wave.

10). The compression-decompression wave of those defec-
tive shells (S§5,S§1) have the same Av. As seen from Fig. 11,
the configuration shown by filled blue (dark gray) circles and
the empty yellow (light gray) stars form the same configura-
tion (1-6-12-18-25-31) rotated by 180°. The vortices of the
two outer shells have to move only a small distance with
respect to the core in order to restore the same initial con-
figuration after rotation. The distance between two adjacent
vortices d, is nearly the same and each vortex of the shells
Sgs and S; has to slide over d;, when the symmetry axis is
rotated over 360°. Hence, we obtain nearly the same relative
linear velocities of the shells until the current becomes large
enough to make the shells move individually.

C. Intershell defect and hysteresis

We investigated also a very different configuration with
several intershell vortices, for instance, L=89(1-6-12-18
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FIG. 9. (Color online) The evolution of angular velocities of
shells with L=93 (1-6-12-18-25-31). The inset shows the relative
linear velocities of S3s and S3, (i.e., the linear velocities of the
relative backward motion with respect to the core part of the vortex
configuration). The relative linear velocities are nearly the same
until the current reaches the critical value I...
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FIG. 10. (Color online) The evolution of angular velocities of
shells with L=94 (1-7-13-19-24-30). The inset shows that the rela-
tive linear velocities of S%, 8%3, and S?g with respect to the outer
shells are the same until the outer shells unlock.

=23=29) (see inset of Fig. 12). Here, we have another kind
of defect, called “intershell defect,” which always locks three
or more shells, e.g., shells S, S35, and S5, in configuration
(1-6-12-18=23=29) are locked until 7,>0.014, where the
locking of shells is represented by the symbol “=" instead of
“-” Once unlocked, all the shells rotate separately under the
action of the applied current.

The configuration L=89 in the absence of any applied
current is shown in the inset of Fig. 12. It is nearly sixfold
symmetric except for the outermost shell which is almost a
circle due to the effect of the boundary. However, vortex
rows become aligned along a straight line [shown by the blue
(dark gray) lines in the inset of Fig. 12], i.e., along one of the
symmetry axes. One of these rows is longer than the others
and locks the three outer shells for I, <I, and all the vortices
rotate as a rigid body [shown in Fig. 13(a)]. For I,>1,, vor-
tex “D” (shown in the inset of Fig. 12) jumps to the middle
shell (S3,,,) and the outermost vortex next to it is pushed
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FIG. 11. (Color online) The filled blue (gray) circles and the
empty yellow (light gray) stars show the locations of vortices before
and after rotation over 180° for L=93 (1-6-12-18-25-31).
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FIG. 12. (Color online) The average angular velocities of shells
versus driving current /. When [y>1., the intershell vortex D
jumps into the middle shell (S*T7).

into the outermost shell (S3,). These opposite radial move-
ments of vortices in the row with a defect [Fig. 13(b)] finally
rearrange the vortices into a well-defined shell structure (i.e.,
“dynamical ordering”). Although the gradient of the Lorentz
force in the central part of the disk is not large enough to
break the rigid-body motion of the core (1-6-12), it is suffi-
cient to overcome the friction among all of the locked shells
St7ep+ 525, and 83,

For the configuration (1-6-12-17=23=29) with L=88, we
find that another intershell defect appears along another sym-
metric axis [the blue (dark gray) line in Fig. 14(a)]. With
increasing driving force, vortex “D1” moves to the middle
shell (S?ﬁ) while vortex “D2” moves to the second outer shell
(532) [Fig. 14(b)]. Finally, the intershell defects disappear
and all the vortices are arranged in the five-shell structure
(S¢,5%,,55,,855,85) when I,>1I,. The driving force then is
large enough to unlock all the locked shells S, S35, and S5,
however, the core (1-6-12) is still stable and rotates as a rigid
body.

For I,<I,., the driving current is unable to destroy the
radial vortex line(s) with defects. All the vortices rotate in
the rigid-body mode. When the vortex system has transited
from the static stable state to the dynamic steady state (with
a well-defined shell structure), the system will not collapse
into the static stable state immediately if we slightly decrease

1,=0.02  At=3

FIG. 13. (Color online) The vortex displacements with L=89
for: (a) driving current I,=0.01, total time Az=6 (6000 MD steps),
and (b) driving current /,=0.02, total time Az=3. When I,<1,, the
intershell vortex D stays between two shells (S*T7 and S33). When
1y>1,, the intershell vortex D jumps to the middle shell 5?7.
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FIG. 14. (Color online) (a) The configuration and the average
angular velocities of the different shells versus driving current /.
The vortex displacements with L=88 for: (b) driving current I
=0.01, total time Ar=6 (6000 MD steps) and (c) driving current
1,=0.03, total time Ar=2. The defects are marked by the small
dashed rings. When I,> 1, the intershell vortex “D1” jumps to the
n}liddle shell S?G and the intershell vortex “D2” jumps to the shell
S5y

I, below I, (see Fig. 15). However, with further decreasing I,
(i.e., Iy<I), the dynamic state becomes unstable and the
system returns to the static stable state, thus all the vortices
have the same angular velocity. The critical current (1,) to
unlock S5, ,, and S3,,,, with increasing current is much
larger than the critical current (I,) when the system returns to

[ L=88(1-6-12=17=23=29)
| h=103.5
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FIG. 15. (Color online) The angular velocities of the different
shells when the driving current is increased (solid lines) or de-
creased (dashed lines of the same colors). I, is the critical value for
breaking the rigid-body motion by increasing current while 7 is the
critical current for returning to the rigid-body motion when decreas-
ing current. When the current is between I, and I_, the angular
velocity of each shell is different when increasing and decreasing
current (i.e., the hysteresis effect of angular velocity).
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the rigid-body rotation with decreasing current. In this re-
gime, for the same value of the applied current, we can have
different distributions of angular velocities, i.e., hysteresis in
angular melting is found. The /., is the same for increased
or decreased current (as shown in Fig. 15), therefore, there is
no hysteresis behavior except for the shells which are locked
by intershell defect(s). Namely, intershell defects are respon-
sible for the hysteresis effect in the angular velocity.

V. CONCLUSIONS

The process of angular melting was investigated in a mul-
tishell (typically, three to five shells) system. Due to the in-
terplay between the (intrashell and intershell) vortex-vortex
interaction, the (in)commensurability between the shells, the
effect of the boundary, and the gradient in the Lorentz force
the process of angular melting becomes very complex in
large mesoscopic disks. First, different scenarios of angular
melting were found for different configurations. By analyz-
ing the average angular velocity of the vortices in each shell,
we found that either an inner shell or an outer shell can first
unlock (i.e., the shell starts to rotate with different angular
velocity with respect to the other shells); the former repre-
sents an usual (“classical”) scenario of angular melting, the
latter is referred to as “unconventional” angular melting. Be-
cause of a larger friction between two commensurate shells
than between incommensurate shells, the commensurability
plays an important role in the angular-melting process. Then,
besides all-commensurate-shell configurations (i.e., the
magic-number configurations), we investigated two kinds of
imperfect-sixfold systems, which include intrashell defect(s)
and intershell defect(s), respectively. An intrashell defect can
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cause an inversion of the angular velocities of the shells, i.e.,
when a shell which is closer to the center and thus experi-
ences a larger Lorentz force moves slower than the adjacent
shell with larger radius. To understand this unusual behavior,
we distinguished three phases in the angular-melting process.
The above unconventional dynamics is observed only in one
of those phases, namely, during the compression-
decompression motion. When an extra (defect) vortex is
present that shifts the other vortices from their triangular-
lattice positions, a part of the shell becomes nearly circlelike
whereas another part keeps the hexagonal shape. In this case,
the local shear modulus becomes angle dependent. There-
fore, when the shear stress is not large enough to unlock the
whole defect shell, the shell is partly melted and induces a
very particular dynamical behavior, i.e., the motion in the
form of a propagating compression-decompression wave. An
intershell defect always locks several shells which rotate to-
gether up to some critical current. When the shear stress
finally breaks the radial vortex line(s) containing defect(s),
all shells that were locked by the defect release and start
rotating individually with different angular velocities. Fur-
thermore, such a lock-unlock process causes a hysteresis ef-
fect in the angular velocities of the shells. Therefore, differ-
ent angular velocities of vortex shells have been found
depending on the history, i.e., whether the applied current is
increased or decreased.
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